

Multispectral Cube SW – UNS61000

Document ID			
Version	Version 1.3		
Originator	Efrat Immer		
Approval Date			
Status	Draft		

History:

Version	Date	Author	Description
1.3	30/07/2020	Efrat Immer	Algorithm team leader

TABLE OF CONTENT

I LIBERTY ANALYSIS SOFTWARE – VERSION 2.0			
	1.1	SPECTRUM PROFILE	. 3
	1.2	FALSE COLOR	.4
	1.3	CLASSIFICATION	. 7
	1.4	PRE-PROCESSING MODULE	. 8

1 Liberty Analysis Software – Version 1.3

Liberty's analysis software add-ons include the following functionalities:

- a) Spectrum profile plotting the average spectrum of a selected ROI.
- b) False colour a set of methods used for false-colour visualization.
- c) Classification a set of classification methods.

The analysis software also includes 2 modules:

- a) Pre-processing functions for different pre-processing options of the multispectral cube.
- b) Analysis display functions for different presentation options of the analysis results.

1.1 Spectrum profile

This option is used for investigating the spectral response of a selected area in the multispectral cube. The output is a graph of the average spectrum of the selected ROI.

Example – spectrum profile of LED in 850nm:

The Y-axis represents the average grey value.

The X-axis represents the CWL of the multispectral bands.

1.2 False color

Methods:

- 1. **STD**
 - Calculates a normalized STD of the multispectral cube in the spectral dimension. The STD is normalized by the average pixel intensity.
 - It is recommended to use this method with the "Normalize cube" option for spectral anomaly detection.
 - Returns a single channel array.
 - The output of this method is presented with a contrast adjustment tool for manual thresholding. The min and max sliders set the minimum and maximum intensities for the contrast stretching.
 - Example apple with a bruise:

- 2. **PCA**
 - PCA (principal component analysis) is a linear unsupervised dimensionality reduction technique. This option calculates the PCA of the multispectral cube in the spectral domain and presents the calculated components according to a descending order of importance.
 - It is recommended to use this method with the "Normalize cube" option and "Denoise" option.
 - Returns a multi-channel array.
 - The output of this method is presented with a slider for component selection.
 - Example apples with bruises choose one of the first components to see the bruises:

3. **NDVI**

- Calculates NDVI Normalized Difference Vegetation Index. This index is used in agriculture as an indicator of a plant's health.
- Equation:

$$NDVI = \frac{\text{NIR-Red}}{\text{NIR+Red}}$$

The red band is the closest band to 670 nm The NIR band is the closest band to 800 nm

- It is recommended to use this method with the "Normalize cube" option.
- Returns a single channel array.
- The output of this method is presented with a contrast adjustment tool for manually thresholding. The min and max sliders set the minimum and maximum intensities for the contrast stretching.
- Example:

4. Bands selection

- This option is used for presenting the multispectral cube with a slider for band selection.
- Example 6 bands multispectral cube:

5. **3 bands**

- Selects 3 bands in the multispectral cube that are equally spaced along the spectrum and presents it as an RGB image.
- Example:

1.3 Classification

Methods:

In this window, additional multi-options button is added for selecting the required number of classes.

- 1. **SAM**
 - Calculates the spectral angle between the spectrum of each pixel in the multispectral cube to a reference spectrum.
 - When selected, a UI is opened for selecting the reference points that represent the different classes.
 - Returns a multi-channel array.
 - If the number of required classes is 3, then, the output will be presented as a false color RGB image. Otherwise, it will be presented with a slider for class selection.
 - Example number of wanted classes = 3:

2. Kmeans

- Unsupervised classification using Kmeans clustering.
- Returns a false-color image in which each class is assigned with a different color.
- The number of output classes can be less than the number of wanted classes due to the way Kmeans algorithm works.
- Example:

7 False Color Image - KMEANS				
8				

1.4 Pre-processing module

Functions:

- 1. **ROI selection** Manually select ROI.
- 2. **Face detection** Detect a single face in the image and define the ROI accordingly.
- 3. **Spectral white balance** Normalize the multispectral cube by the estimated illumination spectrum.
- 4. **Spatial denoising** Spatial denoising of the multispectral cube.